❶ 零基础学习Python要学多久

刚刚在北京黑马,学了,半年,脱产,现在已经工作了三个月了。这个只要不笨就行,你要了解自己是不是适合编程,比如,能沉住气,能深入思考原理,逻辑思维能力行不行,对信息方面敏感吗?如果是的话,那你非常适合编程。

❷ 学习Python需要掌握哪些技术

分享Python学习路线。
第一阶段Python基础与Linux数据库。这是Python的入门阶段,也是帮助零基础学员打好基础的重要阶段。你需要掌握Python基本语法规则及变量、逻辑控制、内置数据结构、文件操作、高级函数、模块、常用标准库模块、函数、异常处理、MySQL使用、协程等知识点。
学习目标:掌握Python基础语法,具备基础的编程能力;掌握Linux基本操作命令,掌握MySQL进阶内容,完成银行自动提款机系统实战、英汉词典、歌词解析器等项目。
第二阶段WEB全栈。这一部分主要学习Web前端相关技术,你需要掌握HTML、CSS、JavaScript、jQuery、BootStrap、Web开发基础、VUE、Flask Views、Flask模板、 数据库操作、Flask配置等知识。
学习目标:掌握WEB前端技术内容,掌握WEB后端框架,熟练使用Flask、Tornado、Django,可以完成数据监控后台的项目。
第三阶段数据分析+人工智能。这部分主要是学习爬虫相关的知识点,你需要掌握数据抓取、数据提取、数据存储、爬虫并发、动态网页抓取、scrapy框架、分布式爬虫、爬虫攻防、数据结构、算法等知识。
学习目标:可以掌握爬虫、数据采集,数据机构与算法进阶和人工智能技术。可以完成爬虫攻防、图片马赛克、电影推荐系统、地震预测、人工智能项目等阶段项目。
第四阶段高级进阶。这是Python高级知识点,你需要学习项目开发流程、部署、高并发、性能调优、Go语言基础、区块链入门等内容。
学习目标:可以掌握自动化运维与区块链开发技术,可以完成自动化运维项目、区块链等项目。
按照上面的Python学习路线图学习完后,你基本上就可以成为一名合格的Python开发工程师。当然,想要快速成为企业竞聘的精英人才,你需要有好的老师指导,还要有较多的项目积累实战经验。
自学本身难度较高,一步一步学下来肯定全面且扎实,如果自己有针对性的想学哪一部分,可以直接跳过暂时不需要的针对性的学习自己需要的模块,可以多看一些不同的视频学习。

❸ 学习python的话大概要学习哪些内容

学习Python编程需要学习:
第一阶段:Python语言及应用
课程内容:Python语言基础,面向对象设计,多线程编程,数据库交互技术,前端特效,Web框架,爬虫框架,网络编程
掌握技能:
(1)掌握Python语言语法及面向对象设计;
(2)掌握Python多线程并发编程技术,数据库交互技术,为大数据分析及挖掘做准备;
(3)掌握三大Python后端框架结构,解决Web前后端开发问题;
(4)掌握分布式多线程大型爬虫技术,开发企业级爬虫程序;
(5)掌握与机器学习、深度学习相关的基础数学知识,训练学员逻辑能力、分析能力,为人工智能算法的学习做好知识储备。
第二阶段:机器学习与数据分析
课程内容:机器学习概述,监督学习,非监督学习,数据处理,模型调优,数据分析,可视化,项目实战
掌握技能:
(1)进入人工智能领域,掌握机器学习及数据分析基本概念;
(2)掌握机器学习经典算法相关原理及优化过程;
(3)掌握数据处理基本方法,结合实际项目实现数据可视化操作,完成数据分析应用。
第三阶段:深度学习
课程内容:深度学习概述,TensorFlow基础及应用,神经网络,多层LSTM,自动编码器,生成对抗网络,小样本学习技术,项目实战
掌握技能:
(1)掌握TensorFlow、BP神经网络、CNN卷积神经网络、递归神经网等深度学习算法;
(2)掌握自动编码机,序列到序列网络、生成对抗网络,孪生网络等基本应用;
(3)掌握深度学习前沿技术,并根据不同项目选择不同的技术解决方案;
(4)掌握小样本技术,及与深度学习融合的相关方法,为企业样本不足情况提供解决方案。
第四阶段:图像处理技术
课程内容:图像基础知识,图像操作及运算,图像几何变换,图像形态学,图像轮廓,图像统计学,图像滤波,项目实战
掌握技能:
(1)掌握图像处理技术相关基础知识;
(2)掌握图像降噪、增强、复原、分割、提取特征等处理的方法和技术应用技巧;
(3)掌握图像与前沿深度学习处理方法的结合方法;
(4)掌握前沿深度学习模型,实现图像分类、目标检测、模式识别等主要应用。

❹ 如何将基于hadoop的电影推荐系统的推荐结果用网页面显示出来

一般主要为: 算法思想 基本构架 运行流程 任务力度

❺ 模拟一个基于朋友圈的电影推荐系统。 设定目前微信总用户有1000人,每个人均有自己的朋友圈,每个人

你这种要花大劳动力的不是100财富值能解决的。还是去相关的雇佣网站上发布需求吧。价格估计不低。

❻ 学IT的,写了一个电影推荐系统,但是为什么评分预测值大于五

全文以“预测电影评分”例子展开

r(i,j)=0则表明user_j没有对movie_i 没有评分,

推荐系统要做的就是通过预测user_j对这些movie {i|r(i,j)=0}的评分来给user_j 推荐其可能会喜欢的电影<预测评分较高的movie>

=======================================二、基于内容的推荐=======================================

对每个movie_i引入特征x(i)=(x1, x2),这种特征可能表明user对movie类型的偏好:浪漫or动作等

对于每个user引入一个参数theta,然后对评分矩阵的每列(对应一个user)做线性回归,数据是{ (x(i), y(i,j)) |r(i,j)=1,for some j all i}

像机器学习一样,x(i)添加个1变量x(i)=(1, x1, x2)

那么对于未评分的movie_t,我们可以使用线性回归训练的参数theta与对应特征x(t)做内积来得到其预测评分

对每个用户都训练一个参数theta_j,优化模型如下:

优化算法:注意正则项是不约束x(i)=(1, x1, x2)中1对应的参数theta的第一项theta0,所以k=0与k=1,2分别对待

=======================================三、协同过滤=======================================

现在换个角度:如果知道theta for all user j,如何来预测x(i) = (x1, x2) all i

仍然可以使用线性回归,为训练每个x(i),需要评分矩阵的第i行数据{ (x(i), y(i,j)) |r(i,j)=1,for some i all j}

theta_j = (0, theta1, theta2) ;theta1=5说明user_j喜欢romance类movie, theta2=5说明user_j喜欢action类movie,只能有一个等于5哦,

我觉得也可以是:theta_j = (0, 4, 1) ;喜欢romance 4 action 1.

对应的优化:

协同过滤:交替优化theta与x

=========================================四、协同过滤算法=======================================

优化:

优化:注意去掉了theta和x的添加项

=========================================五、实现细节补充=======================================

实现细节:

如果有user没有对任何电影评分或者所有评分的电影都是0分,那么所学习到的参数是零向量,

则预测都是0值,这是不合理的。通过 将评分矩阵减去其行均值再进行线性回归来“避免”这种情况

=========================================六、一点思考==========================================

协同过滤那块,同时优化theta、x,这样得到的theta、x还有特定的意义<比如:x是否还表征对影视类型的喜爱与否>没有?

回归中,在x数据上不添加1-feature是不是因为后来引入的平均值化;如果不是,那会对结果有什么影响?

用x-feature来表征一个movie,x-feature的各分量的可解释性;应该会有一部分user应为演员的缘故有一些"偏爱"。

这里,讲的"基于内容的推荐"与"协同过滤"跟以前对这两个词的认识/所指内容不同,查清楚、搞明白。

这周还会再更一篇关于此节课的算法实现,会对上述部分问题做出回答。

    ❼ 如何学习python

    分享Python学习路线:

    第一阶段:Python基础与Linux数据库

    这是Python的入门阶段,也是帮助零基础学员打好基础的重要阶段。你需要掌握Python基本语法规则及变量、逻辑控制、内置数据结构、文件操作、高级函数、模块、常用标准库模板、函数、异常处理、mysql使用、协程等知识点。

    学习目标:掌握Python的基本语法,具备基础的编程能力;掌握Linux基本操作命令,掌握MySQL进阶内容,完成银行自动提款机系统实战、英汉词典、歌词解析器等项目。

    第二阶段:web全栈

    这一部分主要学习web前端相关技术,你需要掌握html、cssJavaScript、JQuery、Bootstrap、web开发基础、Vue、FIask Views、FIask模板、数据库操作、FIask配置等知识。

    学习目标:掌握web前端技术内容,掌握web后端框架,熟练使用FIask、Tornado、Django,可以完成数据监控后台的项目。

    第三阶段:数据分析+人工智能

    这部分主要是学习爬虫相关的知识点,你需要掌握数据抓取、数据提取、数据存储、爬虫并发、动态网页抓取、scrapy框架、分布式爬虫、爬虫攻防、数据结构、算法等知识。

    学习目标:可以掌握爬虫、数据采集,数据机构与算法进阶和人工智能技术。可以完成爬虫攻防、图片马赛克、电影推荐系统、地震预测、人工智能项目等阶段项目。

    第四阶段:高级进阶

    这是Python高级知识点,你需要学习项目开发流程、部署、高并发、性能调优、Go语言基础、区块链入门等内容。

    学习目标:可以掌握自动化运维与区块链开发技术,可以完成自动化运维项目、区块链等项目。

    按照上面的Python学习路线图学习完后,你基本上就可以成为一名合格的Python开发工程师。当然,想要快速成为企业竞聘的精英人才,你需要有好的老师指导,还要有较多的项目积累实战经验。

    对于Python开发有兴趣的小伙伴们,不妨先从看看Python开发教程开始入门!B站上有很多的Python教学视频,从基础到高级的都有,还挺不错的,知识点讲的很细致,还有完整版的学习路线图。也可以自己去看看,下载学习试试。

    ❽ 计算机系论文,利用用户之间的关系进行推荐系统设计

    首先你需要进抄行一袭个框架的设计,是cs或者是bs的,然后你需要选择使用社么程序语言进行实现。
    其次,你需要进行程序架构和数据库的设计,这个就到了你的问题了。你的程序主要是一个用户管理和一个知识共享,现在看来是这样的。
    这样的系统建议使用bs结构,这个东西看起来像豆瓣,你可以找找相关的模型,简单的话asp首选。

    数据库部分,主要围绕两个实体一个是客户,一个是你推荐的东西。
    设计书可以个参加cmmi标准,希望能帮到你。

    ❾ 电影推荐系统中电影类型怎么弄

    建军大业

    9.4分加入收藏
    主演:刘烨朱亚文黄志忠王景春
    导演:刘伟强
    类型:动作战争其它
    时长:127分钟
    年代:2017
    地区:内地
    语言:汉语普通话
    简介