⑴ 机器视觉系统有哪些组成部分

机器视觉主要由5部分组成:照明、镜头、相机、图像采集卡、视觉处理器。
照明:照明是影内响机器视觉系统输入容的重要因素,它直接影响输入数据的质量和应用效果。由于没有通用的机器视觉光源照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。光源可分为可见光和不可见光。常用的几种可见光源是白帜灯、日光灯、水银灯和钠光灯。可见光的缺点是光能不能保持稳定。
镜头:
镜头选择应注意:焦距;目标高度 ;影像高度 ;放大倍数 ;影像至目标的距离 ;中心点 / 节点 ;畸变。
相机:按照不同标准可分为:标准分辨率数字相机和模拟相机等。要根据不同的实际应用场合选不同的相机和高分辨率相机:线扫描CCD和面阵CCD;单色相机和彩色相机。
图像采集卡:图像采集卡只是完整的机器视觉系统的一个部件,但是它扮演一个非常重要的角色。图像采集卡直接决定了摄像头的接口:黑白、彩色、模拟、数字等等。
视觉处理器:视觉处理器集采集卡与处理器于一体。以往计算机速度较慢时,采用视觉处理器加快视觉处理任务。

⑵ 机器视觉系统由哪几部分构成

机器视觉系统的应用领域越来越广泛。在工业、农业、国防、交通、医疗、金融直至体育、娱乐等等行业都获得了广泛的使用,可以说已经深入到我们的生活、生产和工作的方方面面。

一个完整的机器视觉系统的主要工作过程如下:
(1) 工件定位检测器探测到物体已运动至接近摄像机视野的中心,向图像采集卡发送触发脉冲;
(2) 图像采集卡按事先设定的程序和时延,分别向摄像机和照明设备发出起动脉冲;
(3) 摄像机停止目前的扫描,重新开始新的一帧扫描;或者摄像机在起动脉冲来到之前处于等待状态,起动脉冲来到后起动一帧扫描;
(4) 摄像机开始新的一帧扫描之前,打开曝光机构,曝光时间可以事先设定;
(5) 另一个起动脉冲打开灯光照明,灯光开启时间应与摄像机曝光时间匹配;
(6) 摄像机曝光后,正式开始一帧图像的扫描和输出;
(7) 图像采集卡接收模拟视频信号并通过A/D将其数字化,或者直接接收摄像机数字化之后的数字视频;
(8) 图像采集卡将数字图像放到处理器或者计算机的内存中;
(9) 处理器对图像进行处理、分析、识别,获得测量结果,或逻辑控制值;
(10) 处理结果控制流水线的动作;或进行定位,纠正运动的误差等。
机器视觉系统的优点有:
1、非接触测量,对于观测者与被观测者都不会产生任何损伤,从而提高系统的可靠性。
2、具有较宽的光谱响应范围,例如使用人眼看不见的红外测量,扩展了人眼的视觉范围。
3、长时间稳定工作,人类难以长时间对同一对象进行观察,而机器视觉则可以长时间地作测量、分析和识别任务。
http://..com/question/431373928.html?oldq=1

⑶ 机器视觉行业如何设计机器视觉系统框架

如何设计机器视觉系统框架 --- 创科黎友在决定一个机器视觉系统的需求及应用时,很多因素需要考虑。机器视觉(或称为自动可视检测系统)一般包含了大量部件,这些部件直接影响系统的性能。为了获得这些子系统的优越性能,并无缝将他们接合在你的生产线上,最好花一些时间来学习视觉系统的组成、应用、以及正确的规划的重要性。 机器视觉的应用在对精度和可靠性都很高的重复性检测任务中,机器视觉广泛应用在这些生产流程中。一些常见的任务:在食物包装中检测数据代码;自动检测部件用于正确的安装;为机器人的捡起(pick)和放置(place)动作提供向导;在制药中效验药品的颜色;读取部件的条形码、以及在产品上的标识;还有更多更多。基于PC的机器视觉系统的基本组成 由于机器视觉应用非常广泛,在不同的系统里使用不同的部件,但是,我们可以将这些部件分成如下几类(见图1)。图1 通常的机器视觉系统的主要组成(附件1) 1. 摄像头和光学部件 –这一类通常含有一个或多个摄像头和镜头(光学部件),用于拍摄被检测的物体。根据应用,摄像头可以基于如下标准,黑白RS-170/CCIR、复**色(Y/C),RGB彩色,非标准黑白(可变扫描),步进扫描(progressive-scan)或线扫描。 2. 灯光 –灯光用于照亮部件,以便从摄像头中拍摄到更好的图像,灯光系统可以在不同形状、尺寸和亮度。一般的灯光形式是高频荧光灯、LED、白炽灯和石英卤(quartz-halogen)光纤。 3. 部件传感器 –通常以光栅或传感器的形式出现。当这个传感器感知到部件靠近,它会给出一个触发信号。当部件处于正确位置时,这个传感器告诉机器视觉系统去采集图像。 4. 图像采集卡 –也称为视频抓取卡,这个部件通常是一张插在PC上的卡。这张采集卡的作用将摄像头与PC连接起来。它从摄像头中获得数据(模拟信号或数字信号),然后转换成PC能处理的信息。它同时可以提供控制摄像头参数(例如触发、曝光时间、快门速度等等)的信号。图像采集卡形式很多,支持不同类型的摄像头,不同的计算机总线。 5. PC平台 –计算机是机器视觉的关键组成部分。应用在检测方面,通常使用Pentium III或更高的CPU。一般来讲,计算机的速度越快,视觉系统处理每一张图片的时间就越短。由于在制造现场中,经常有振动、灰尘、热辐射等等,所以一般需要工业级的计算机。 6. 检测软件 –机器视觉软件用于创建和执行程序、处理采集回来的图像数据、以及作出“通过/失败(PASS/FAIL)”决定。机器视觉有多种形式(C语言库、 ActiveX控件、点击编程环境等等),可以是单一功能(例如设计只用来检测LCD或BGA、对齐任务等等),也可以是多功能(例如设计一个套件,包含计量、条形码阅读、机器人导航、现场验证等等)。 7. 数字I/O和网络连接 –一旦系统完成这个检测部分,这部分必须能与外界通信,例如需要控制生产流程、将“通过/失败(PASS/FAIL)”的信息送给数据库。通常,使用一张数字I/O板卡和(或)一张网卡来实现机器视觉系统与外界系统和数据库的通信。 配置一个基于PC的机器视觉系统认真的计划和注意细节能帮助你确保你的检测系统符合你的应用需求。如下是你必需考虑的几点: 确定你的目标 –这可能是最重要的一步 棗决定在这个检测任务中你需要实现什么,检测任务通常分为如下几类: 1. 测量或计量 2. 读取字符或编码(条形码)信息。 3. 检测物体的状态 4. 认知和识别特殊的特性棗模式识别 5. 将物体与模板进行对比或匹配 6. 为机器或机器人导航检测流程可以包含只有一个操作或包含多个与检测任务相关的任务。为了确认你的任务,首先你应该明确为了最大限度检测部件你需要做的测试,也就是你能考虑到会出现的缺陷。为了明确什么哪个才是最重要的,最好做一张评估表,列出“必须做”和“可以做”的测试。一旦主要的对测试标准满意,随后可以将更多的测试加进去来改善检测过程,一定要记住,添加测试的同时也会增加检测的时间。确定你需要的速度 –系统检测每一个部件需要多少时间?这个不只是由PC的速度决定,还受生产流水线速度的影响。很多机器视觉包含了时钟/计时器,所以检测操作的每一步所需要的时间都可以准确测量,从这些数据,我们就可以修改我们的程序以满足时间上的要求。通常,一个基于PC的机器视觉系统每一秒可以检测20-25个部件,与检测部件的多少和处理程序以及计算机的速度有密切关系。聪明地选择你的硬件 –一套机器视觉系统的性能与它的部件密切相关。在选择的过程中,有很多捷径棗特别在光学成像上棗可能很大程度降低系统的效率。如下是在选择部件时你必须紧记的几个基本原则。 1. 摄像头摄像头的选择与应用的需求直接相关,通常考虑三点:a)黑白还是彩色;b)部件/目标的运动;c)图像分辨率。在检测应用中大部分使用黑白摄像头,因为黑白图像能提供90%可视数据,并且比彩色便宜。彩色摄像头主要用于一些需要分析彩色图像的场合里。根据部件在检测时是否移动,决定我们选择标准隔行扫描摄像头还是逐行扫描摄像头。另外,图像的分辨率必须足够高,以提供检测任务需要的足够的数据。最后,摄像头必须质量好和可以避免工业现场中的振动、灰尘和热的影响。 2. 光学部件和照明这个至关重要的因素往往被人所忽略。当你使用一个很差的光学部件或照明,就算你使用最好的机器视觉系统,它表现出的性能甚至比不上一个配上良好光学部件和适当照明的低能力系统。光学部件的目标是产生最好和最大可用面积的图像,并且提供最好的图像分辨率。照明的目标是照亮需要测量或检测的部分的关键特征。通常,照明系统的设计由如下因素决定:颜色、纹理、尺寸、外形、反射率等等。 3. 图像采集卡虽然图像采集卡只是完整的机器视觉系统的一个部件,但是它扮演一个非常重要的角色。图像采集卡直接决定了摄像头的接口:黑白、彩色、模拟、数字等等。使用模拟输入的图像采集卡,目标是尽量不变地将摄像头采集的图像转换为数字数据。使用不正确的图像采集卡可能得到错误的数据。工业用的图像采集卡通常用于检测任务,多媒体采集卡由于它通过自动增益控制、边沿增强和颜色增强电路来更改图像数据,所以不用在这个领域里。使用数字输入的图像采集卡的目标是将摄像头输出的数字图像数据转换并输送到PC中作处理。考虑各种变化:人类的眼睛和大脑可以在不同的条件下识别目标,但是机器视觉系统就不是这样多才多艺了,它只能按程序编写的任务来工作。了解你的系统能看到什么和不能看到什么能帮助你避免失败(例如将好的部件认为是坏的)或其它检测错误。一般要考虑的包括部件颜色、周围光线、焦点、部件的位置和方向和背景颜色的大变化。正确选择软件:机器视觉软件是检测系统中的智能部分,也是最核心的部分。软件的选择决定了你编写调试检测程序的时间、检测操作的性能等等。图2 DTVF是一个多功能、图形化编程的机器视觉软件(附件2)机器视觉提供了图形化编程界面 (通常称为“Point & Click”) 通常比其他编程语言(例如Visual C++)容易,但是在你需要一些特殊的特征或功能时有一定的局限性。基于代码的软件包,尽管非常困难和需要编码经验,但在编写复杂的特殊应用检测算法具备更大的灵活性。一些机器视觉软件同时提供了图形化和基于代码的编程环境,提供两方面最好的特征,提供了很多灵活性,满足不同的应用需求。通信和记录数据:机器视觉系统的总的目标是通过区分好和坏的部件来实现质量检测。为了实现这一功能,这个系统需要与生产流水线通信,这样才可以在发现坏的部件是做某种动作。通常这些动作是通过数字I/O板,这些板与制造流水线中的PLC相连,这样坏的部件就可以跟好的部件分离。例外,机器视觉系统可以与网络连接,这样就可以将数据传送给数据库,用于记录数据以及让质量控制员分析为什么会出现废品。在这一步认真考虑将有助于将机器视觉系统无缝与生产流水线结合起来。需要考虑的问题是: 1. 使用了什么类型的PLC,它的接口如何? 2. 需要什么类型的信号? 3. 现在使用或必须使用什么类型的网络? 4. 在网络上传送的文件格式是什么?通常使用RS-232端口与数据库通信,来实现对数据的纪录。为以后做准备:当你为机器视觉系统选择部件时,时刻记住未来的生产所需和有可能发生的变动。这些将直接影响你的机器视觉软硬件是否容易更改来满足以后新的任务。提前的准备将不仅仅节约你的时间,而且通过在将来重用现有的检测任务可以降低整个系统的价格。机器视觉系统的性能由最差的部分决定(就像一个木桶的容量由最短的一个木块决定),精度则由它能获取的信息决定。花时间和精力合理配置系统就可以建造一个零故障和有弹性的视觉检测系统。

⑷ 机器视觉系统的组成及各部分功能

机器视觉系统一般是由:机器视觉光源,光学镜头,工业相机,传感器,图像分析处理软件,通讯接口等组成的。
1、光源:在目前的机器视觉应用系统中,好的光源与照明方案往往是整个系统成败的关键,光源与照明方案的配合应尽可能地突出物体特征量,在物体需要检测的部分与那些不重要部份之间应尽可能地产生明显的区别。其中 LED 光源凭借其诸多的优点在现代机器视觉系统中得到越来越多的应用
2、光学镜头:光学镜头相当于人眼的晶状体,在机器视觉系统中非常重要。镜头的主要性能指标有焦距、光阑系数、倍率、接口等。

3、相机:相机是机器视觉系统获取原始信息的最主要部分,目前主要使用的CMOS相机和CCD相机。目前 CCD 摄像机以其小巧、可靠、清晰度高等特点在商用与工业领域都得到了广泛地使用。

4、图像采集卡:在基于 PC 机的机器视觉系统中,图像采集卡是控制摄像机拍照,完成图像采集与数字化,协调整个系统的重要设备。

5、视觉传感器:基于 PC 机的机器视觉系统结构没有模块化,安装不方便,可移植性差,特别是与工业广泛使用的PLC 接口比较麻烦。从软件和硬件开发两个方面来考虑,都需要一种更适合工业需求的机器视觉组件。目前国外已经开发出了一种叫做视觉传感器的模块化部件。这种视觉传感器集成了光源、摄像头、图像处理器、标准的控制与通讯接口,自成为一个智能图像采集与处理单元,内部程序存储器可存储图像处理算法,并能使用 PC 机,利用专用组态软件编制各种算法下载到视觉传感器的程序存储器中。视觉传感器将 PC 的灵活性,PLC 的可靠性、分布式网络技术结合在一起。用这样的视觉传感器和PLC 可以更容易地构成机器视觉系统。
详情请参考普密斯光学

⑸ 一个典型的机器视觉系统包括哪些硬件

光源:用于表现特征
光源控制器:用于给光源供电
镜头:用于成像
延长管:用于改变内像距
相机:用于物理图像到电容子信号的转换
采集卡:用于将相机中的电子信号传输到计算机中
计算机、嵌入式系统、智能相机等:用于分析图像
机器视觉软件:用于处理图像,得到所以需要数据结果
运动控制:用于控制气缸、机械手、马达等运动,以完成机器的功能
传感器:位置传感器、存在传感器、安全传感器,用于判断产品有没有、到位否之类

⑹ 机器视觉系统的工作原理是什么

机器视觉是人工智能正在快速发展的一个分支。简单说来,机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,得到被摄目标的形态信息,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。
工作原理:
机器视觉检测系统采用CCD照相机将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统对这些信号进行各种运算来抽取目标的特征,如面积、数量、位置、长度,再根据预设的允许度和其他条件输出结果,包括尺寸、角度、个数、合格
/
不合格、有
/
无等,实现自动识别功能。

⑺ HALCON机器视觉软件的HALCON简介

它节约了产品成本,缩短了软件开发周期——HALCON灵活的架构便于机器视觉,医学图像和图像分析应用的快速开发。在欧洲以及日本的工业界已经是公认具有最佳效能的Machine Vision软件。
HALCON源自学术界,它有别于市面一般的商用软件包。事实上,这是一套image processing library,由一千多个各自独立的函数,以及底层的数据管理核心构成。其中包含了各类滤波,色彩以及几何,数学转换,形态学计算分析,校正,分类辨识,形状搜寻等等基本的几何以及影像计算功能,由于这些功能大多并非针对特定工作设计的,因此只要用得到图像处理的地方,就可以用HALCON强大的计算 分析能力来完成工作。应用范围几乎没有限制,涵盖医学,遥感探测,监控,到工业上的各类自动化检测。
HALCON支持Windows,Linux和Mac OS X操作环境,它保证了投资的有效性。整个函数库可以用C,C++,C#,Visual basic和Delphi等多种普通编程语言访问。HALCON为大量的图像获取设备提供接口,保证了硬件的独立性。它为百余种工业相机和图像采集卡提供接口,包括GenlCam,GigE和IIDC 1394。

⑻ 机器视觉主要由哪几部分组成

机器视觉主要由5部分组成:照明、镜头、相机、图像采集卡、视觉处理器。

照明:照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。由于没有通用的机器视觉光源照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。光源可分为可见光和不可见光。常用的几种可见光源是白帜灯、日光灯、水银灯和钠光灯。可见光的缺点是光能不能保持稳定。

镜头:
镜头选择应注意:焦距;目标高度 ;影像高度 ;放大倍数 ;影像至目标的距离 ;中心点 / 节点 ;畸变。

相机:按照不同标准可分为:标准分辨率数字相机和模拟相机等。要根据不同的实际应用场合选不同的相机和高分辨率相机:线扫描CCD和面阵CCD;单色相机和彩色相机。

图像采集卡:图像采集卡只是完整的机器视觉系统的一个部件,但是它扮演一个非常重要的角色。图像采集卡直接决定了摄像头的接口:黑白、彩色、模拟、数字等等。

视觉处理器:视觉处理器集采集卡与处理器于一体。以往计算机速度较慢时,采用视觉处理器加快视觉处理任务。

⑼ 机器视觉系统都由哪几部分组成那位高人指点下

机器视觉系统的应用领域越来越广泛。在工业、农业、国防、交通、医疗、金融直至体育、娱乐等等行业都获得了广泛的使用,可以说已经深入到我们的生活、生产和工作的方方面面。

一个完整的机器视觉系统的主要工作过程如下:
(1) 工件定位检测器探测到物体已运动至接近摄像机视野的中心,向图像采集卡发送触发脉冲;
(2) 图像采集卡按事先设定的程序和时延,分别向摄像机和照明设备发出起动脉冲;
(3) 摄像机停止目前的扫描,重新开始新的一帧扫描;或者摄像机在起动脉冲来到之前处于等待状态,起动脉冲来到后起动一帧扫描;
(4) 摄像机开始新的一帧扫描之前,打开曝光机构,曝光时间可以事先设定;
(5) 另一个起动脉冲打开灯光照明,灯光开启时间应与摄像机曝光时间匹配;
(6) 摄像机曝光后,正式开始一帧图像的扫描和输出;
(7) 图像采集卡接收模拟视频信号并通过A/D将其数字化,或者直接接收摄像机数字化之后的数字视频;
(8) 图像采集卡将数字图像放到处理器或者计算机的内存中;
(9) 处理器对图像进行处理、分析、识别,获得测量结果,或逻辑控制值;
(10) 处理结果控制流水线的动作;或进行定位,纠正运动的误差等。
机器视觉系统的优点有:
1、非接触测量,对于观测者与被观测者都不会产生任何损伤,从而提高系统的可靠性。
2、具有较宽的光谱响应范围,例如使用人眼看不见的红外测量,扩展了人眼的视觉范围。
3、长时间稳定工作,人类难以长时间对同一对象进行观察,而机器视觉则可以长时间地作测量、分析和识别任务。

⑽ 如何设计机器视觉系统框架

图像采集设备机器视觉教学实验平台是专门针对大学和研究机构开展机器视觉教学回和研究的答机器视觉教学实验平台,提供包括图像测量、检测、定位、跟踪识别等多个图像处理库函数,功能强大,可覆盖工业生产、机器视觉、智能交通、航空航天等众多图像处理应用领域。 机器视觉图像处理教学实验开发平台可利用其提供的大量图像处理和机器视觉算法进行二次开发,解决现代工业产品生产过程中涉及的各种各样视觉问题。实验平台结构开放,提供扩展接口,也可添加自己的图像处理优异算法。 提供多种图像处理实验,如图象分割、图象融合、机器学习、模式识别、图象测量、图象处理、模式识别和人工智能、三维测量、双目立体视觉等实验,可以培养学生对机器视觉产品知识的深入理解和掌握,锻炼学生的研究能力,创新思维以及独立解决技术难题的能力。 作为一套完整的机器视觉教学实验开发平台,使用者可利用其配套的工业相机、LED光源、工业镜头、支架、算法软件等搭建自己的视觉处理系统原型,了解图像采集设备等配件的应用和选型,轻松设计、印证和评估自己的视觉系统,特别适合于大学和研究机构开展机器视觉教学和科研工作。